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2.2.3 Practicality of Calculating The Growth Function

Different hypothesis sets call for different growth functions, and it might not be practical to calculate them each
time. Therefore we resort to calculating the upper bound of growth function. It is going to make a looser bound
than the actual growth function, but then we can make general arguments.

This is where the notion of shattering comes handy. A hypothesis set H can shatter a particular set of size N, if
it can generate all of the 2V possible dichotomies for the given points.

We also say N = k is a breaking point for the hypothesis set H when it cannot shatter any arrangement of unique
N points. For example, a single perceptron in a 2D space can shatter some sets of 3 points, but cannot shatter any
of the possible 4 points sets. Thus, N = 4 is a breaking point for the simple perceptron.

2.2.4 Bounding the Growth Function

Why is k important? It is used in calculating the upper bound of my, (N) for arbitrary N. Sweet deal! Figuring
this out involves introducing a new quantity B (N, k) which can serve as the upper bound of my (IV), and finding
a recurrence on B and solving it. The end result:

which is a k—th order polynomial of N. Polynomial!!!

2.3 The VC Dimension

So this break point basically defines the generalization property of a given hypothesis set, so we decided to give it
a more impressive—sounding name: the Vapnik—Chervonenkis Dimension dy ¢ of a hypothesis set is defined as the
largest N that H can shatter any input of such size: so it is the break point — 1. Then, the growth function is a
dyc—th order polynomial of N:

my (N) = O (N%e)



So how do we use the VC dimension in the generalization bound? What we wanted to do was just replace M
with mg; (N), so we can get bounds of the form

1 2my (N)
E i < E;p — In——~~2
T

This bound doesn’t exactly hold, but it is true in spirit. What happens if my, is finite and is a polynomial of
N? That will be multiplied by a nontrivially large number (1/6), but it will go through a log; so hopefully 2N will
dominate that O (klg N) term when N is large, and we get a decent generalization bound.

The actual bound is described in the following theorem:

VC Generalization Bound For any tolerance § > 0,

Eout (g) < Ei, (g) + —1In

with probability > 1 — 4.
What does this bound say? For a hypothesis set with a finite VC dimension, E,,; will eventually converge to E;, as
N increases, even the cardinality of the set is infinite!
2.3.1 Practical Considerations

The VC dimension does give a bound, but it is a quite loose bound. For example, take a very simple model with
growth function ms (N) = N + 1. The VC dimension here is just 1, and what is the probability such that F,,; will
be within 0.1 of E;, given 100 training examples? Solving the following

8 4-101
—1 =0.1
Vioo " s 0

for ¢ gives 356.52. How is that useful for a probability estimate? Not very much. :—p So this bound is not

practically useful in general, but the text covers some useful rules of thumb:

« The analysis is equally loose for different types of hypothesis. It is (experimentally) observed that hypothesis
sets with smaller VC dimension generalize better than ones with larger dimension, so we can use it as a first
cut method to compare hypothesis sets.

+ The text introduces another interesting rule of thumb. If your hypothesis set has dy¢, you better have at least
10 x dy . This is a rather small number, I guess.
2.3.2 Significance of Test Set

Of course, we have better ways to assess E,,;. Validation errors are one. Also we can set aside a separate test set;
since test set is not used in training, the effective hypothesis size is 1. So the simple Hoeffding bound can be applied,
which will be a reasonably tight bound.

2.4 Bias—Variance Tradeoff

Another way to formalize E,,; is called the Bias and Variance tradeoff. The text formulates this around a classifi—
cation problem. The setup is as follows.



We believe the training data set, D is a random variable drawn randomly from the population. Therefore, the
final hypothesis g resulted from training is also a random variable, and should be annotated by D: let’s call it g(®).
So, what is the expected out—of-sample error

Bt (s) = B2 [ (57 0 - £ )]

with respect to D?
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Note the term Ep [¢(P) (x)]; this is the result from the average hypothesis. It is equivalent to generating lots of
training sets, learning from individual test sets, and averaging the responses from different models. Let’s call this
hypothesis g (z). Then, we can rewrite above using g as follows:
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L variance bias

which shows the bias—variance decomposition.

2.4.1 Interpretation of Bias—Variance

What are the possible interpretations?

* Bias represents the squared error between the “average” hypothesis and the target function. So it represents
how much we are going to be off from the target, in general. In some sense, they measure the flexibility of the
learning model to fit the target function.

» Variance represents how much a given g(P) is going to be off from the “average” hypothesis. It represents how
our final hypothesis is vulnerable to changes in D. In some sense, they measure the stability of the learning
model.

A simple model of course has a high bias: but it will have lower bias. A complex model will have a higher variance,
but lower variance. As we increase the size of the sample, variance will slowly decrease and eventually bias will
dominate E,,;.

2.5 Comparison of VC Analysis and Bias—Variance Analysis

Following figure, stolen from the lecture slides, illustrates beautifully how the two analysis splits E,;.
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