
Trust Region Policy Optimization

June 11, 2016

TRPO is a gradient-based algorithm for policy optimization. It does not necessarily follow known pat-

terns of reinforcement learning (i.e. policy iteration, policy gradient or actor-critic), but I hear it is won-

derfully easy to use, and gives you great results.

1 Kakade & Langford’s Policy Improvement

TRPO builds upon Kakade & Langford’s result on policy improvement. This work starts on the following

identity, which expresses the expected discount cost (or reward) η of a modified policy π̃ using expected

costs of the original policy π.

η (π̃) = η (π) + Es0,a0,s1,a1,···

[∞∑
t=0

γtAπ (st, at)

]

whereAπ (st, at) is the usual advantage function, defined asQπ (st, at)−V (st, at). It should be noted that

at ∼ π̃ (at|st), which means the trajectory follows π̃, not π. I recognize this identity from when we proved

the correctness (or convergence?) of policy iteration: if we can keep all advantage functions nonpositive,

we can guarantee improvement.

There’s a problem: with function approximators, you cannot guarantee
∑

a π̃ (a|s)Aπ (s, a) will be non-

positive for all states. We overcome this by forming a local approximation:

Lπ (π̃) = η (θ) +
∑
s

ρπ (s)
∑
a

π̃ (a|s)Aπ (s, a)

The difference here is that the state distribution function ρ uses π - which means we follow π, and

only use π̃ for weighting advantage function values. Now, suppose our policies are parameterized by a

parameter vector θ. Then Lπθ0
(πθ) is a good linear approximation of η (πθ)when θ is close to θ0 - the value

matches (obviously Lπθ0
(πθ0) = η (πθ0)), and the gradients match as well.

Kakade & Langford now creates a new policy πnew that is close to πold which minimizes Lπold
(πnew)

which will hopefully minimize η (πnew). Unfortunately, they only had guarantees for πnew which is in the

form of a mixed policy:

πnew = (1− α)πold (a|s) + απ′ (a|s)

This is of course not desirable as policies are bloated over time and the changes we canmake are pretty

small (?).

1

2 TRPO

TRPO realizes that K&L’s guaranteeworkswhenweplug inDmax
TV (πold, πnew) asα. DTV is a distancemeasure

between probability distributions, which is upper bounded by KL divergence. The paper proves:

η (π̃) ≤ Lπ (π̃) + C ·Dmax
KL (π, π̃)

for “some” C (they have the formula for that, I don’t find it important..). Dmax
KL denotes the maximum

KL divergence of π (·|s) and π̃ (·|s) among all states. Now, we can employ some majorization-minimization

argument (remindsme of FISTA?) to prove thatminimizing the RHS of above inequality improves η aswell!

The actual TRPO algorithm is an approximation of minimizing the above quantity. The problems they

were trying to solve was the step sizes were too small, and Dmax
KL is not always well defined. There are two

approximations they used to deal with these:

1. Simply minimize Lπ (π̃) with a constraint that Dmax
KL is lower than a certain threshold.

2. Use average KL divergence (weight each state by the distribution function ρ).

The second approximation allows us to estimate KL divergence from the samples we actually get! Tada!

Here is the outline of the TRPO algorithm.

• We sample (from a simulator or the real environment) one or more rollout sets using π. Now, pick

some state-action pairs, and the rewards observed, and use constrained optimization to find the next

generation policy that minimizes Lπ (π̃) with the KL divergence constraint.

• When calculating Lπ (π̃), use importance sampling (this comes up quite often!) to adjust differences

between π and π̃. (Actually, we don’t even have to rollout using π - we just need its advantage func-

tions. We can take a different sampling distribution q (a|s).. for discrete action spaces they say uni-

form q works better than taking π.)

• Replace advantage functions with action values (this only shifts the objective function by the value

function, which ends up being a constant after expectations are taken of).

With these changes, at each iteration, we solve:

minimizeθ Es∼ρθold
,a∼q

[
πθ(a|s)
q(a|s) Qθold (s, a)

]
subject to Es∼ρθold

[DKL (πθold (·|s) , πθ (·|s))] ≤ δ

Now we can estimate all of these from samples (Q, take s from samples gained using πθold , etc).

2.1 Sampling Strategies

The paper introduces two strategies: single-path (simulate a single trajectory), vine (simulate multiple

trajectories, sample random states along those trajectories, sample a number of short rollouts from those

to estimate rewards). Of course, vine works better usually.

One interesting tidbit mentioned: using a common random number source across different short roll-

outs in vine reduces variance. I am not entirely sure what that means...

2

2.2 Solving the Optimization Problem

They recommend using conjugate gradient algorithm followed by a line search. They talk a little about

calculating Hessian analytically, which I guess makes sense, except that I don’t know how to do that with

general policies... I should look into actual implementations..

I looked at performance graphs. They are good, obviously, and holy crap, CEM is so good for a gradient

free method.

3

