
Reinforcement Learning Notes

jongman@gmail.com

June 29, 2016

Abstract

The usual disclaimers: this is intended to be a personal note. I did try, but not too hard, to make it

correct or understandable, so do not trust everything blindly.

1 Introduction

t represents time, s state, a action. r represents the reward. A policy π is a function which returns the

probablity of doing action a given state s: π (a|s). The world is represented by a probability distribution

for next state s′ and the one-step reward, given a state and action: p (st+1, rt+1|at, st). Note you receive rt+1

after you perform at - mind the indices! This convention might be unintuitive, but used in Sutton. γ is the

discounting factor. The objective of reinforcement learning is to find a policy that maximizes the rewards

it receives from the environment.

1.1 Prediction and Control Problems

Generally, there are two classes of problems in reinforcement learning. The prediction, or estimation

problem asks us to evaluate the given policy - how good is it? The control problem asks us to find the

optimal policy.

2 Value Based Reinforcement Learning

2.1 Value Functions

A value function is a central concept to reinforcement learning. It estimates how good is it for a given policy

to be in the given state. Concretely, it estimates the expected discounted future rewards:

Vπ (st) ∼ Esi,ai|π
[
rt+1 + γrt+2 + γ2rt+3 + · · ·

]
The goal of reinforcement learning is maximizing this expected discounted future rewards. Given an

optimal policy π∗, the value function vπ∗ (s)will satisfy a fundamental property, called theBellman equation,

which is second nature for anyone who understands dynamic programming. Read my book if you don’t...

:-p

vπ∗ (s) =
∑
a

π∗ (a|s)
∑
s′,r

p (s′, r|s, a) [r + γvπ∗ (s′)]

1

Sometimes, just the value function is not enough. In many RL algorithms we define action value func-

tions, which estimates the discounted future rewards following a given action from a given state:

Qπ (st, at) ∼ Esi,ai|π,at

[
rt+1 + γrt+2 + γ2rt+3 + · · ·

]
Note that given an action value function, we can trivially come up with a policy: always choose the

action that maximizes Qπ. This is how many value-based RL algorithms work: it iteratively updates Q,

while the policy is implicitly defined by being greedy with regards to Q.

2.2 Dynamic Programming

2.2.1 Policy Evaluation

Given a policy and a model of the world (i.e. p (s′, r|a, r)), dynamic programming can always solve both

prediction and control problems. The solution to the prediction problem is an iterative DP algorithm - we

can start from a vector of random values V 0
π , and iteratively obtain new values according to the Bellman

equation to find the value function for the given policy. Concretely:

V t
π (s) =

∑
a

π (a|s)
∑
s′,r

p (s′, r|s, a)
[
r + γV t−1

π (s′)
]

This means the value function is self consistent. A lot of RL algorithms start with garbage values for V ,

and iteratively updates it trying to make it self consistent.

2.2.2 Policy Iteration

The solution to the control problem is more interesting. Let’s start with a random policy πrandom, and esti-

mate its value function V by the above algorithm. Now given a state st, consider the following scenario: we

take action a, and follow πrandom (the original policy) thereafter. We have everything we need to estimate

the expected reward of this scenario: we know the one step reward from the environment knowledge, and

we know what will happen thereafter from the value function. Concretely, the total expected discounted

reward for doing action a at this state is:

f (s, a) = Es′,r|a [r + γV (s′)] =
∑
s′,r

p (s′, r|s, a) [r + γV (s′)]

Now, consider a policy π′ that always takes the action that maximizes f :

π′ (s) = argmaxa

∑
s′,r

p (s′, r|s, a) [r + γV (s′)]

This is proven to take the policy towards to the optimal policy, and is called policy improvement. Alternating

these two procedure is the first way to solve the RL problem on a finite MDP: this is called policy iteration.

2.2.3 Value Iteration

Policy iteration is often too slow - as policy evaluation itself is a slow procedure, being iterative. We im-

prove it by interleaving the evaluation step and the improvement step together; which is called value it-

eration, and is generally much more efficient. Instead of repeatedly updating Vπ following the Bellman

equation until convergence, we update to the value of a greedy action. So we now have:

2

Vk+1 (s) = max
a

∑
s′,r

p (s′, r|s, a) [r + γVk (s
′)]

instead of:

Vk+1 (s) =
∑
a

π (a|s)
∑
s′,r

p (s′, r|s, a) [r + γVk (s
′)]

This is also proven to converge on the optimal policy! Now we have solved the control problem too.

End of reinforce learning! Easy right?

2.3 Monte Carlo Methods

Of course, life is not that easy. Having a model of the world is a huge assumption. Even for some trivial

environments (e.g. a game of blackjack), deriving state transitions might be a daunting task. Model-free

methods work without this model of the environment, and just learns by observing what we did, and the

rewards we have received. Monte Carlo, as well as Temporal Difference methods, are examples of model

free methods.

Still, all methods work with value functions. We start with a random value function. and iteratively

improve it until convergence.

2.3.1 Monte Carlo Estimation

In Monte Carlo method, we let the policy interact with the environment without doing anything, and try

to improve the policy from what we observed. These can be either simulated or real. Suppose we have

observed an episode of interaction: we started in state s1, chose action a1, received reward r1 and ended

up in state s2, chose action a2, .. and so on. Now, how good is it to be in s1? One estimate is to take the total

reward we received after being in state s1. So let’s move V (s) toward that value!

Formally, for each st, if this is the first time we encountered this state, do the following update:

V (st) = V (st) + α

(
n∑

i=t+1

ri − V (st)

)

where α is the learning rate, and n is the number of states in the episode (this means we can apply MC

only to episodic problems: with non-episodic problems, n is not defined.)

Blackjack is a good toy example where Monte Carlo is easier to pull off than full DP. Given current

hand of value 15, what’s the probability of getting a 6 next? It’s actually hard to answer but blackjack is

absolutely trivial to simulate! In many cases, drawing and working with samples is easier than working

with the distribution.

2.3.2 Monte Carlo Control

Monte Carlo Control is just acting greedily with the value function. However, a state value is not enough

here: since we do not have the p (s′, r|a, s), we won’t know which state we will end up given an action, nor

what rewards will we receive. Thus, we learn state-action value functions instead: q (s, a). The learning

itself is trivial, and you can now easily maximize with respect to the action.

3

2.3.3 Exploration and ϵ-greedy

The big problem of MC method is that some of the states might be abandoned; they never get visited, thus

have zero expected value, so never get visited by the greedy policy, repeat. Exploring starts method start

simulating in every state, but probably it’s not so practical. Having a soft policy is a more realistic solution;

ensure π (a|s) > 0 ∀s, a. An ϵ-greedy policy satisfies this criteria; it chooses greedily with respect to a value

function most of the time; with a probability ϵ it chooses an action randomly. It is proven that improving

on soft policies still converge to the optimal value function.

2.3.4 Off-Policy Prediction

MCmethods can learn from histories from a different policy: this is called off-policy learning. Say we have

a policy π andwe are trying to learn from trajectory by another policy, µ. The trick is to weight each sample

by the importance-sampling ratio:

ρTt =
T−1∏
k=t

π (Ak|Sk)

µ (Ak|Sk)

Intuitively, this makes sense: if ρ is high, µ is unlikely to take this action, but π is very likely. Since this

example is important and we won’t be getting many samples, it’s good to weight it highly. Although, Silver

notes that off-policy in MC learning is almost always too noisy in practice and thus never works. However,

importance-sampling ratio is an important idea and shows up in a lot of places - for example, TRPO.

2.4 Temporal Difference Learning

TD learning is the hybrid between DP andMCmethods. It learns from actual histories, but at the same time

bootstraps (uses values from earlier iterations), and can be applied online (i.e. applied at every step, not

necessarily at the end of the episode). This makes TD applicable to non-episodic problems. The simplest

TD method, TD(0) updates its estimate of the value function after each step.

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

Quite intuitive, actually. It is effectively using observed probabilities instead of the model as in p (s′, r|a, s)
- it is proven that TD(0) finds the correct for themaximum-likelihoodmodel of the Markov process. Nice.

2.4.1 On-Policy TD Control: Sarsa

State Action Reward State Action: SARSA! :-p The only difference is now we estimate/update Q values.

Q (st, at)← Q (st, at) + α [rt+1 + γQ (st+1, at+1)−Q (st, at)]

where at+1 is chosen from your current policy from st+1.

2.4.2 Off-Policy: Q-learning

With ϵ-greedy, we are actually performing off-policy learning all the time. Because after training is done,

we don’t want to use epsilon greedy anymore, we just want to act greedily! Q-learning exactly does this:

Q (st, at)← Q (st, at) + α
[
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

]
4

2.4.3 MC vs TD

As MC uses realized rewards for all future steps, it has a high variance. On the other hand, it has zero bias

and good convergence property, even when we use function approximation. On the other hand, TD has

low variance and high bias. It also might not converge well with function approximations, and is more

sensitive to initial values than TD.

A fundamental difference of TD is that it actively exploitsMarkovproperty: so it is usuallymore efficient

when the environment is more Markovian.

2.5 Eligibility Trace and TD(λ)

What is 0 in TD(0)? Is there some TD(x) where x > 0? Of course it is! Generalized n-step TD prediction

updates use the following n step return:

Gt+n
t = rt+1 + γrt+2 + · · ·+ γn−1rn + γnVt (st+n)

However, we can never say a specific n is better than all other values. So we take averages of different

returns - in particular, TD(λ) takes the EMA of future returns, called the λ-return:

Lt = (1− λ)

∞∑
n=1

λn−1Gt+n
t

We now realize that MC and TD(0) are both special cases of this algorithm, with λ = 1 and 0 respectively

(although, TD(1) is only roughly equivalent to an every-visit MC). As can be expected, there is usually a

“sweet spot” between the two algorithms, and in some problems TD(λ) with the correct λ can result in

superior performance.

2.5.1 Backward Implementation

Implementingλ-returnnaively requires us to simulate infinite histories beforemaking anyprogress, which

doesn’t make too much sense in non-episodic problems. A backward-looking implementation uses eligibil-

ity traces; which represents how much a given state pair is responsible for current state of the agent. The

eligibility traceEt (s) is increased whenever we visit state s, and exponentially decays every timewhen the

state changes. There are different schemes of updatingEt (s), but they are not probably terribly important.

:-p

Silver introduces recent results that shows the equivalence of forward and backward implementations.

3 Policy-based Reinforcement Learning

3.1 What and Why?

So far, all policies were derived from value functions or action value functions. Policy-based RL methods

(alternatively, actor-only methods) work with the policy directly. Typically, policy is parameterized by a

parameter vector θ. So π (s, a, θ) = P [at+1 = a|st = s, θ]. Softmax policy is a good example.

The main reason we do policy-based RL is dealing with continuous action spaces. With continuous

action space, value-based RL agent need to solve an optimization problem at every step argmaxa Q (s, a),

5

which might not be trivial. With policy based learning, you just generate a random action given the distri-

bution. Better convergence property is another reason. Silver also brings up examples where stochastic

policies are inherently superior than deterministic policies (e.g. adversarial setup). What’s the downside?

Naive policy-based methods typically converge to a local maximum, and can be inefficient and high vari-

ance than naive value-based RL.

3.2 Policy Gradients

Policy based learning works by defining an objective that is expressed in terms of the policy parameter

J (θ), and running numerical optimization to maximize it. The typical objective functions include the start

value (V πθ (s1)), the average value, or average reward per time step. This optimization problem can be

solved in amyriad of ways - we typically resort to gradient basedmethods, which are vastlymore efficient.

SGD and variants go towards the local optimum by following the gradient of the objective function w.r.t. θ

∆θ = α∇θJ (θ)

where ∇θJ (θ) =
{

∂J(θ)
∂θi

}
is called the policy gradient and α is the learning rate.

3.2.1 Estimating Policy Gradient

The objective function is an expected value of some formof reward (discounted or average), andwe cannot

calculate it directly without the distribution of the states. Silver introduces two methods to estimate the

gradient. One is finite difference - this is brute. Another method is the likelihood ratio method. This

exploits the following identity

∇θπθ (s, a) = πθ (s, a)
∇θπθ (s, a)

πθ (s, a)
= πθ (s, a)∇ logπθ (s, a) = E[∇ logπθ (s, a)]

The gradient is the expected value of this quantity! Now, we can sample the quantity∇ logπθ (s, a) as

an unbiased estimator of the gradient. This is so significant it has a separate name; it is called the score

function.

3.2.2 Policy Gradient Theorem

Consider a non-episodic (never-ending) environment. Then with d (s) =
∑∞

t=0 γ
tp (xk = x|d0, π) as the dis-

counted state distribution under policy πθ, we can write J as:

J (θ) = Eπθ

[∞∑
t=0

γtrt

]
=
∑
s

d (s)
∑
a

πθ (s, a) ·Qπθ (s, a)

Using the likelihood ratio method, the gradient is:

∇θJ (θ) =
∑
s

d (s)
∑
a

∇πθ (s, a) ·Qπθ (s, a)

=
∑
s

d (s)
∑
a

πθ (s, a)∇ logπθ (s, a) ·Qπθ (s, a)

= E [∇ logπθ (s, a) ·Qπθ (s, a)]

This is called the policy gradient theorem. The most popular actor-only algorithm, REINFORCE, is a

Monte-Carlo policy gradientwhich uses exactly this. Qπθ (s, a) is, of course, estimated using actual episodes.

6

3.3 Actor-Critic Methods

Maindownfall of vanilla policy-based (“actor-only”) RL is thehigh variance of estimated gradients: Qπθ (s, a)

above has a very high variance, due to the same reason as Monte Carlo. Actor-critic RL is a hybrid be-

tween value-based and policy-based RL. It introduces a “critic” which gives you a low-variance estimate of

Qπθ (s, a). Of course, we know exactly how to solve this - TD or MC learning. So in AC methods, we do TD

learning alongside the actor learning: and instead of Qπθ , we use the estimated value function.

4 Planning

4.1 Interweaving Planning/Acting/Learning

Planning is getting a policy from amodel. Learningmeans translating experience to amodel. Dyna-Q is an

algorithm which interleaves these three aspects of RL into a single algorithm. It is based off of Q-learning;

it maintains a crude model of the world, and at each stage runs backup for some states chosen randomly.

This seems kind of arbitrary.

4.2 When The Model Is Wrong

Typically, when the environment becomes hostile to the policy, RLmethodswill quickly realize and change

its behavior. It is hard when environment changes for the better - unless the algorithis is explicitly encour-

aged for exploration, the new action might not be picked up, even with ϵ-greedy policies.

4.3 Choosing States to Back Up

Vanilla Dyna-Q randomly chooses states and update their value functions. This is suboptimal because of

several reasons. 1. The states that may never come up in real life can get chosen. 2. The value function for

a state might only change when it precedes a state with changed value. Several alternatives are chosen;

trajectory sampling (only update along experience), prioritized sweeping (do a backwards search with

priority being changes in state value), etc.

4.4 Heuristic Search

Do a classic state-space search over multiple levels, and take value function at the leaves of the searched

portion of the tree. TD-Backgammon uses this.

5 Function Approximation

5.1 Stochastic Gradient Descent

Tabular value function is infeasible when the state space is continuous. Then, it is a natural approach to

take each backup as an input-output pair which gets fed into an function approximation algorithm. SGD

is a natural fit for these kind of algorithms, because it allows for piecemeal updates to the approximation.

7

5.2 Eligibility Traces with Function Approximation

Previously we introduced eligibility trace as a mapping from state to a real number. This is impossible

anymore, as there are infinite states. How do we implement eligibility trace? Say the function approxi-

mation is represented by a weight vector wt. Then, eligibility trace is a vector, with one element for each

component of wt. The update is:

et = γλet−1 +∇v̂ (St,wt)

which is the decaying sum of recent gradients to the value function. This makes some intuitive sense;

if a dimension had a high gradient on recent states, it can be updated to greatly change the value of the

states; it is somehow responsible for them.

5.3 Convergence Properties

Perhaps not surprisingly, we can’t always get convergence guarantees when using function approxima-

tion. For linear approximators and on-policy scenarios, things look good, but outside of that (nonlinear

approximators, or off-policy scenarios), all bets are off. Silver notes that in practice linear approxima-

tor does work well even without theoretical guarantees. However, for nonlinear approximator controls,

special care must be taken to prevent the coefficients from blowing up. Gradient TD is one such algorithm.

6 Continuous Control

6.1 Deterministic Policy Gradient

7 Recent Improvements

7.1 Replay Buffer and Fixed Q Targets

Silver mentions the bag of tricks (ooh, juicy) Atari-solving DQN employed. There are two big tricks: expe-

rience replay and fixed Q-targets.

Experience replay avoids feeding transitions in the order they happen to avoid feeding correlated in-

puts. This is super related to financial markets as well. Concretely, it stores all transition (st, at, rt+1, st+1)

instead of applying SGD update and throwing them away. After each step, randomly pick a small batch

(10s~) of such updates from the library of transitions and apply them.

Fixed Q-targets mean avoiding a moving target; TD learning uses maxa Q (st+1, a) to update Q (st, at) -

with nonlinear approximators, the update can cause the target to move, and this can spiral out of control.

Instead, you keep an old policy towards which we converge to. We periodically swap out this reference

policy.

7.2 Double Q-Learning

Q-learning has a tendency to overestimate action values, because we take maxa E [Q (st+1, a)] instead of

E [maxa Q (st+1, a)]. Double Q-learning tries to fix this by having two Q functions: whenever we observe a

transition (st, at, rt+1, st+1), we update only one of the two functions. And we use the value from the other

function to calculate the update target.

8

7.3 Dueling Network Architecture

7.4 Trust Region Policy Optimization

State of the art policy gradient method. Less data efficient than regular value-based learning methods.

9

